Sobre espectros de dopaje que rondan los Juegos Olímpicos de Río2016

Sobre espectros de dopaje que rondan los Juegos Olímpicos de Río2016

Estamos por iniciar uno de los eventos más emocionantes y esperados por la humanidad, Los Juegos Olímpicos, y antes de su arranque el tema del dopaje es protagonista. El escándalo que ha salpicado a la delegación rusa, causándole la eliminación automática de más de la cuerta parte de su delegación, hace prometer que este será un punto de discusión en las actuales contiendas. Es lamentable ver cómo los iconos del trabajo duro y la disciplina flaquean por el reconocimiento y el dinero, mostrando en muchos casos el triste estado de nuestra sociedad. Para empeorar la situación la búsqueda de claridad en las contiendas implica entre otras el empeño de materiales, equipo y gente que podrían estar realizando contribuciones relevantes a la humanidad.

article-2215727-15711b70000005dc-899_634x470

Tal vez el caso más famoso de dopaje. Lance Armstrong quien confesara luego de ser acusado en 2013. El dopaje sistemático en su equipo muestra lo difícil que aveces es revelar este tipo de tretas.

14690569079523

Para poner a punto el laboratorio de la Universidad Federal de Río de Janeiro y lograr la certificación necesaria para los juego Olímpicos fueron invertidos en  60 millones de dolares.

La ciencia tristemente entra en las dos caras de la moneda: Por un lado la búsqueda del superhumano ayudado por agentes externos mueve equipos enteros de científicos con motivaciones tal vez no muy sanas. Estos, a la hora de hacer fraude en competencias deben, además, ser capaces de lograr ayudas lo suficientemente imperceptibles para no ser detectadas por las pruebas anti dopaje; Por el otro lado también hay científicos trabajando en sistemas que permitan revelar fraudes con mayor precisión, aunque en este caso el resultado es sólo uno de las muchas aplicaciones que la técnica puede tener.

maradona-enfermera

Diego Maradona el mundial de fútbol de 1994 momentos antes de que le fuera tomada la muestra que revelaría la presencia de cinco sustancias prohibidas en su orina.

madscientist

 

Mientras la toma de muestras de orina y sangre para las pruebas son bien conocidas por todos, el procedimiento de revelación y análisis posterior es algo que en general ignoramos. En esta entrada trataré de dar un pequeño sabor de cómo trabajan los reveladores de dopaje para los juegos  Olímpicos de Río de Janeiro, siendo una oportunidad más para descubrir un poco de ciencia. Para esto debemos primero hablar de Espectros… sí espectros.

Espectros que no son fantasmas

La detección de agentes de dopaje se realiza a través de espectros.  La palabra espectro tiene básicamente dos significados en el español donde la más conocida es la de fantasma. Sin embargo, también así se llama al conjunto de distintas posibilidades que un fenómeno o situación puede tener. Por ejemplo el espectro de edades en un salón de clase usualmente barre un periodo de alrededor de dos años, y ese espectro cambia de curso en curso. Así para el último año de escuela el espectro estará entre los 16 y los 17 años, mientras que para el primero de la básica estará entre los 6 y los 7 años. Para la escuela entera el espectro se amplia a todo el rango desde los 6 a los 17. De modo que una persona puede, conociendo la edad de un niño, saber más o menos su curso. Esto último es lo que denominamos un filtro, que se encarga de escoger sólo un rango en el espectro de tal forma que los valores que caen dentro del rango permitido por el filtro corresponden a un curso dado. Este es precisamente el truco que vamos a utilizar con el dopaje aunque no con edades sino con distancias y radios de giro como ya veremos.

A la palabra espectro los científicos le hemos dado una particularidad extra pues no solo nos interesa cuales son las posibilidades sino además cual es la recurrencia de cada una. Así por ejemplo sabemos que en el último año pueden haber niños que por una u otra razón llegaron con menos edad, por ejemplo 14 o 15 años, lo que ampliaría el espectro, sin embargo, estos casos son menos frecuentes que los de 16 y 17 años. En forma más precisa las edades más frecuentes son 16 y 17, una información valiosa si queremos saber más sobre el espectro. En efecto con esta información podemos, por ejemplo, distinguir mejor el último curso del penúltimo. En ambos casos su espectro cubre las edades de 15 a 17, pero en el penúltimo curso la edad 15 es mucho más frecuente.

Para un científico un espectro entonces son las posibilidades de una medida junto con la probabilidad, o frecuencia, que cada una de estas tenga. En términos estadísticos esto es lo que se denomina histograma, tan famoso en época de elecciones.

H-Histo1_clase350

En un curso de fotografía se han arreglado los participantes por sus edades en intervalos de 10 años. Casi la tercera parte de las personas tienen entre 30 y 39 años. El 72 por ciento de los participantes tiene entre 20 y 49 años.

Existen gran variedad de espectros y cada uno a la vez tiene un gran abanico de aplicaciones prácticas y científicas. El espectro que hoy no atañe es el de masas en una muestra dada, por ejemplo de orina o sangre.

El espectrómetro de masas

El aparato con que se obtiene un espectro es denominado espectrómetro o espectroscopio, aunque este último usualmente se restringe a los espectros concernientes a la radiación electromagnética como la luz visible. Para el análisis de pruebas para dopaje se utiliza el espectrómetro de masas que distingue partículas o moléculas por su masa, o mas precisamente por el valor dado de la razón masa carga eléctrica m/q, y se aprovecha el hecho que la masa prácticamente identifica cada molécula y elemento conocido. La técnica tiene variantes con distintos detalles dependiendo de la aplicación especifica  pero el punto general es la utilización de la interacción de las moléculas con un campo electromagnético donde el más usual el uno magnético, caso que expongo ahora brevemente.

En ausencia de campos eléctricos una partícula con carga q interactua con el campo magnético experimentando una fuerza, fuerza de Lorentz, dada por:

\vec F=\frac{1}{c}q \vec v \times \vec B,

donde c es la velocidad de la luz en el vacío y \vec v es la correspondiente de la partícula. El producto “\times” es una operación entre los vectores \vec v y \vec B que indica que la fuerza que la partícula experimenta es perpendicular a ambos. De la famosa segunda ley de Newton, \vec F=m \vec a, vemos entonces que la aceleración \vec a, que es el cambio en el tiempo de la velocidad, es perpendicular a la velocidad. Se concluye, entonces, que la magnitud de la velocidad no puede cambiar, pues esto indicaría una aceleración en la dirección de la velocidad, y los cambios de velocidad se evidencian sólo en un cambio en su dirección. Suponiendo que \vec B no cambia en el tiempo tenemos que la magnitud de la aceleración también permanece constante en el tiempo. Tenemos entonces un movimiento donde la rapidez (magnitud de la velocidad) es constante y el cambio de su dirección, dado por la aceleración, también es constante en el tiempo. Este es precisamente el movimiento que experimenta una partícula en una trayectoria circular con rapidez constante así que concluimos que las partículas se mueven en círculos.

chap1_freebody1

Una fuerza de magnitud constante siempre perpendicular a la velocidad causa un movimiento circular uniforme.

Podemos saber el radio del círculo para la trayectoria utilizando la expresión para la aceleración centrípeta como ya lo hiciéramos antes en nuestra cita con Sandra Bullock . Con a_c=v^2/r tenemos de la segunda ley que

m\frac{v^2}{r}=\frac{1}{c}q v B,

de modo que

v=\frac{q}{m} \frac{r B}{c}.

En realidad la velocidad de cada partícula depende de la masa pues cuando son aceleradas antes de entrar al espectrómetro su aceleración es inversa a su masa, nuevamente por la segunda ley de Newton. La aceleración se realiza por medio de un voltaje V que brinda a las partículas una velocidad dada por:

v^2=2\frac{q }{m}V.

Finalmente tenemos entonces

\frac{q}{m} =\frac{2 V c^2}{B^2}\frac{1}{r^2},

Ya que todas las moléculas experimentan el mismo voltaje y campo magnéticos, con c una constante universal, tenemos una relación uno a uno entre la razón q/m y el radio de la trayectoria. Usualmente para aplicaciones de análisis de muestras las moléculas se bombardean con electrones de modo que algunos son atrapados por estas que quedan ionizadas. En general sólo toman un electrón lo que indica que la carga de las moléculas también es la misma para todas e igual a la carga del electrón y los radios de las trayectorias quedan determinadas exclusivamente por la masa de las partículas.

 

Las trayectorias de las dependen de su masa. Las partículas más masivas tienen radios de giro mayores, lo que permite distinguir las distintas partículas por su posición en el detector.

Así, como hiciéramos con los niños y sus cursos escogiendo un rango de edades para evidenciar el curso correspondiente, si queremos conocer la masa de las partículas involucradas debemos escoger un rango de radios (distancias). El detector se encarga de evidenciar la localización de cada partícula y por tanto su masa, mientras un contador graba la recurrencia de cada dato. El resultado entonces se puede graficar haciendo un histograma que nos muestra un espectro de masas como este.

mass smoker

Espectro de masas para una muestra de piel de un fumador regular luego de consumir café. Se revela la presencia de Nicotina (m/z 163) y cafeína (m/z 195). Tomado de link.

Un caso más complejo es el del espectro del viento solar tomado por la sonda SOHO .

soho mass sun

En el espectro de masas del viento solar se revelan elementos como Oxigeno (masa 16), SIlicio (masa 28), Calcio (masa 40) y Hierro (masa 56). Tomado de link.

En los anteriores el análisis se realiza comparando calibraciones previas que permiten revelar la presencia de elementos según los picos observados. Dicho esto se tienen dos características que hacen más práctico un espectrómetro: su sensibilidad, que permite detectar elementos muy poco abundantes, y su resolución, que permite distinguir picos causados por dos partículas de masa similar. En el mundo de la trampa por dopaje se busca siempre lograr que la abundancia de los elementos prohibidos en la sangre y orina, sea inferior a los que pueden ser detectados. De no ser posible esto entonces se trata de camuflar estos elementos de modo que no puedan ser distinguidos de los permitidos, aprovechando que las sustancias organicas en general tienen masas muy similares. Por fortuna, los avances tecnológicos también logran mejorar las técnicas cada Olimpiada, así por ejemplo se cuentan por decenas los casos de muestras archivadas que en años pasados pasaron las pruebas sin problema y ahora se observan dopadas. La resolución del espectrómetro está dada por la distancia mínima entre picos que se pueden diferenciar, y para dos masas la distancia entre picos está dada por:

r_1^2-r^2_2=\frac{2cV}{qB^2 }(M_2-M_1).

Para aumentar esta diferencia podemos o bien disminuir el campo magnético B, lo que implicaría trayectorias más amplias y por tanto un equipo más grande, o aumentar el voltaje V. Cuando se llega a el límite práctico de esta simple complementación se opta entonces por combinar distintas fases de medición, por ejemplo rompiendo las moléculas luego de la primera fase de medición de modo que es posible revelar su estructura interna. Todos estos y más serán implementados en el laboratorio de la Universidad Federal de Río de Janeiro en la actual versión de los Olímpicos, donde serán analizados más de 6000 muestras de sangre y orina durante las justas, implementando un espectrómetro tipo cuadrupolar.

En este caso la situación en ligeramente distinta pero nuevamente es la interacción entre las cargas y el campo lo que divide espacialmente las partículas según su masa,

Nunca antes se había logrado un nivel de detección como el que se tiene ahora, por lo que no sería de extrañar el aumento de los deportistas hallados en la trampa, aunque todos esperamos que luego de la situación con Rusia este no sea el caso. Por el contrario, ojalá en estos Olímpicos los protagonistas sean sólo los deportistas, que con su trabajo diario, arduo  y apasionado nos motivan a todos a buscar el máximo nivel en cada cosa que hacemos.

Nos estamos leyendo.

Debo agradecer la atenta lectura, correcciones y sugerencias de Daniel Gallego del Institudo Catalán de Investigaciones Químicas.

Sigue leyendo

Anuncios

¡Al infinito y más allá!

La semana pasada tuve la oportunidad de compartir con jóvenes de un par de colegios de Tunja y también de la Escuela de Física de la UPTC en una charla que me implicó bastante trabajo de preparación. Sobre todo porque quería que fuera suficientemente dinámica e impactante cómo para dejar alguna emoción que no fuera aburrimiento. El trabajo fue tan dispendioso que no vale la pena que se quede en la charla, así que hice algunas copias de la presentación, que repartí al final del evento. Sin embargo las copias no fueron suficientes y entre más gente la aproveche mejor, así que la he dejado de acceso libre para que cualquier persona con conexión a Internet pueda disfrutarla, esperando eso sí cualquier inquietud, comentario o consejo.

Debo aclarar que por efectos de estética y también por falta de tiempo en la preparación no he colocado las fuentes originales de las figuras y fotografías que aparecen allí, las cuales son todas ajenas a mi creación y obtenidas navegando en la internet. Yo sólo las he organizado para darles un sentido y unir ideas. Sobre la música de fondo tampoco poseo derechos de autor. Se trata de las “Variaciones para cuerdas vientos y teclados” de Steve Reich, uno de mis compositores favoritos, interpretada por la sinfónica de San Francisco dirigida por Edo de Waart.

Bueno sin más preámbulos acá la presentación Prezi, con la que además de poder navegar pueden jugar haciendo zoom en las imágenes y partes del cuadro. Espero la disfruten. (Para comenzar pulsar sobre la imagen)

Captura de pantalla 2014-11-04 15.50.58

La idea de estas presentación nació hace más de un año cuando visité por primera vez el sitio web ESCALA donde se puede explorar e interactuar con infografía del contenido conocido de nuestro universo, desde lo más pequeño a lo más grande. La idea cuando se fue construyendo tomó forma a algo más parecido al viaje personal que nos embarcamos varios de nosotros hace unos treinta años junto con Carl Sagan en la serie de televisión y el libro Cosmos. Sin embargo, en la presentación abordé temas que no están en Cosmos. En particular preguntas relacionadas con la gravedad cuántica, que con las herramientas aprendidas por parte de la teoría de supercuerdas han tomado un matiz menos místico.

Los dos puntos que quise enfatizar en la charla fueron: a pesar que la humanidad es un conjunto de seres insignificantes en parámetros cosmológicos hemos logrado, gracias a nuestra curiosidad, creatividad y ganas de conocer y explorar, comprender el universo casi hasta los límites de la observación. Y nos hemos atrevido a imaginarnos algo más grande que el universo, el multiverso. La segunda idea es el hecho que hoy más que nunca antes el conocimiento de lo muy grande implica una comprensión profunda de lo muy pequeño. En particular, cuando exploramos lo muy pequeño, con ayuda de la teoría de supercuerdas, volvemos a encontrarnos con el multiverso, como si se encontrara justo en los dos extremos de lo infinitamente grande y lo infinitamente pequeño.

Nuevamente espero lo disfruten tanto como yo construyéndola,

nos estamos leyendo,

Diego

P.D. No puedo dejar de mencionar un detalle de la charla de ayer. Al comenzar la charla pregunté a los asistentes qué era lo más pequeño y lo más grande que habían visto, imaginado, o escuchado mencionar. En la primera fila estaban un par de abuelos, de alrededor de 70 años de edad y con apariencia más bien humilde. El abuelo con emoción buscó la respuesta a la primera y respondió “las partículas constituyentes”. Esa respuesta me emocionó pero la que me dejó boquiabierto fue la de lo más grande. Esa la pensó un poco más para al final responder “LA VIDA” ¡WOW! Ojala todos tuviéramos los ojos de este abuelo.

P.P.D. En algún aparte de la charla pregunté a los asistentes si habían visto la Vía Láctea alguna noche. No recuerdo que alguno haya respondido que sí e incluso algunos dudaron que se pudiera. En ese momento confirmé lo afortunado que soy de vivir fuera y lejos de la ciudad. Donde como techo tengo el espectáculo más magnífico que pueda imaginar.

P.P.P.D Les dejo además un serie de videos que hubiera deseado acompañaran la charla pero que por cuestiones de tiempo no era posible

Este corto ya es un clásico del cual se han hecho un par de remakes, pero sigue siendo el referente

Con un poco más de infografía científica precisa

Cómo de hecho sabemos cuan grande es el universo

Una comparación entre estrellas, que es ni de cerca lo más grande que hay, para notar lo pequeños que somos

Donde se muestra lo que somos capaces de inventarnos cuando de de ver lo muy pequeño se trata.

Mover átomos uno por uno no sólo puede tener aplicaciones prácticas, también producir esto. Cada punto es un átomo

El principio de incertidumbre que hace que el mundo microscópico sea tan loco que aun nos cuesta trabajo entenderlo


Bueno pero ¿qué tan grande es un átomo?

Una rápida visita al CERN (Centro Europeo para la Investigación Nuclear)

Pero tengan cuidado cuando vayan de tour por el CERN y visiten el Gran Colisionador de Hadrones, les puede ocurrir esto

Un bonito resumen del estado actual de la Física de interacciones fundamentales que incluye el paradigma de la materia oscura hasta la teoría de cuerdas

El video ganador de un concurso, propuesto por Brian Greene, para explicar la teoría de cuerdas en pocos minutos

De seguro hay (al menos) tres y cambian entre ellos

Pues sí, tenemos la seguridad de que existen tres neutrinos. Al menos es así como los hemos categorizado o clasificado. Hay un neutrino por cada leptón cargado: neutrino electrónico, neutrino muónico (o del muón) y neutrino tauónico (o del tau). Es lo que llamamos sabores. Permítaseme, además, hacer otra distinción: estos tres tipos de neutrinos son los que llamamos “activos”, para distinguirlos de otros (posibles) neutrinos denominados “estériles”, mucho más difíciles de observar, más esquivos y más misteriosos que los primeros. Ya Diego hizo un comentario sobre ellos (los estériles) y, ciertamente, se merecen todo un post dedicado a ellos, pero este no lo es. Es una tarea que prometo hacer pronto, es un compromiso adquirido.

En esta ocasión quiero llamar la atención de los lectores sobre un reciente resultado experimental de gran interés para la física de neutrinos. Es probable que hayan oído o leído sobre el experimento llamado OPERA. Se hizo célebre porque en Septiembre de 2011 reportó una medida de la velocidad de los neutrinos que parecía ser mayor que la de la luz. La medición resultó ser producto de un error experimental y no un verdadero efecto físico, pero mientras se descubrió tal error, el resultado causó mucho revuelo en la comunidad científica, más allá de los físicos especializados en neutrinos.

Vista del detector OPERA. Tomada de [1].


Sin embargo, para quienes nos especializamos en el estudio de los neutrinos, OPERA es muy importante, pues “fue diseñado para llevar a cabo la prueba más directa del fenómeno de oscilación de neutrinos” [1], fenómeno en el cual un neutrino de un sabor determinado, se transforma en un neutrino de otro sabor diferente después de recorrer una cierta distancia.

Es cierto que OPERA no es el único programa experimental que tiene ese objetivo, pero sí es el único que ha estado buscando directamente la transformación de neutrinos del muón en neutrinos del tau. Pues lo hermoso de todo esto y el motivo de este artículo, es que OPERA reportó recientemente que ha observado el tercer evento de oscilación de neutrinos, específicamente del tipo que ha buscado: νμ ντ. Resulta sorprendente que sea apenas la tercera vez que detectan este evento, teniendo en cuenta que han tomado datos entre 2008 y 2012. Sin embargo, el punto es que esta transformación es la más intrincada de observar por la enorme dificultad que conlleva la observación del leptón cargado asociado, es decir, el tau.

El detector OPERA recibe un haz de neutrinos muónicos que han viajado en línea recta desde el CERN, en la frontera franco-suiza, hasta su locación al interior de la montaña Gran Sasso. Como los neutrinos interactúan muy pero muy poco con cualquier tipo de materia, en su viaje a través de la Tierra no sufren ninguna desviación ni perturbación, de manera que una altísima cantidad de neutrinos muónicos llegan, efectivamente al detector de OPERA. Si se observan neutrinos de otro sabor, entonces se puede decir que se ha presentado una oscilación.

The Neutrino Beam

El haz de neutrinos desde el CERN hasta el detector de OPERA. Tomada de [1].

Pero la pregunta que surge es la siguiente: ¿y en qué sabor de neutrino se transforma el neutrino originalmente muónico? Pues bien, la oscilación de neutrinos, siendo puramente debida a la mecánica cuántica, es un fenómeno probabilístico que depende, entre otras cosas, de la energía del neutrino original y de la distancia recorrida por el mismo. (Entre otras cosas, digo, porque hay otros parámetros importantes, pero me permitiré no entrar en más detalles por el momento.) Así, con una cierta probabilidad, los neutrinos muónicos se transforman en neutrinos tauónicos, solo que para que esta transformación sea efectivamente observada, debe detectarse un leptón de sabor tau, y esta es la parte complicada ya que este leptón tiene la propiedad de decaer muy rápidamente, haciendo extremadamente difícil su identificación. Como lo dice el Profesor Matt Strassler, “los taus falsos son comunes […]“, por lo cual la búsqueda de taus es mucho más compleja que la de electrones o muónes.

Es por esto que la noticia es tan relevante e interesante. El arduo trabajo de la Colaboración OPERA ha rendido frutos y nos provee de información que nos permite confirmar el hecho de que los neutrinos oscilan, de que el fenómeno es real, físico. Es una evidencia de oscilaciones en el canal νμ→ ντ  en el modo de aparición [3] (es decir, aparición de un neutrino de un sabor en un haz de neutrinos de otro sabor). Es una ratificación de que vamos por el camino correcto en nuestro contínuo deseo por entender la naturaleza a nuestro alrededor.

¿No es hermoso? Para mí lo es.

[1] The OPERA Home Page, http://operaweb.lngs.infn.it/

[2] http://www.ipp.phys.ethz.ch/research/OPERA

[3] INFN Press Release, http://operaweb.lngs.infn.it/spip.php?article58

Y al final, ¿qué es un neutrino?

Lo he estado pensando. Desde hace tiempo, ciertamente, pero más en los últimos días. Seguramente, una de las razones es el hecho de estar enseñando física y de, como profesor-investigador, estar a la expectativa de atraer la atención de estudiantes que quieran unirse al mundo de la física, y en particular, al estudio de esta elusiva partícula.

Como quiera que sea, ¿qué es un neutrino? Sin entrar en detalles “técnicos”, se me ha ocurrido que, al final de cuentas, el neutrino es un salvavidas. Y es que se puede decir que el neutrino se formuló, se postuló, se “definió” para salvar la vida de uno de los principios de la física más importantes: la conservación de la energia (fue el físico Wofgang Pauli quien lo hizo por allá en 1930: “…the possibility that there could exist in the nuclei electrically neutral particles,…”).

Al tiempo se pueden decir más cosas. Cosas desde la física, que es lo más importante. El neutrino es una de las partículas fundamentales existentes en la naturaleza; después de los fotones, los neutrinos son las partículas más abundantes en el Universo (así que son las partículas masivas más abundantes); es un primo-hermano del electrón (al menos uno de ellos); no tiene carga eléctrica; su masa es muy pequeña (mucho más que la masa del electrón); que… Y se pueden dar detalles, características y más explicaciones técnicas para tratar de explicarlo.

Y sin embargo, aun “sabiendo” todo esto, seguimos sin entenderlo tan profundamente como entendemos las demás partículas fundamentales. Tan interesante e importante es la física de esta partícula, que nos ha permitido saber que el Modelo Estándar de partículas elementales debe ser modificado, extendido, para poder explicar los fenómenos que experimentan los neutrinos. Claro está que en la actualidad hay muchos argumentos más a favor de esta necesidad, pero creo no equivocarme al decir que los neutrinos fueron los primeros en evidenciarla.

Alguien dijo que “los neutrinos son los vampiros de la física.”

Hay mucho más por decir. ¡Y hay mucho más por descubrir! Seguiré escribiendo sobre los neutrinos. Pero no solo sobre ellos.